On 2-categorical aspects of (quasi)bialgebras

ADRIANA BALAN
University Politehnica of Bucharest

Geometric Methods in Mathematics
TU Dresden
January 2024

Problems

- Given a (co)quasi-Hopf algebra, associate a universal Hopf algebra to it.
- Given a coquasi-bialgebra, associate a universal bialgebra to it.
- Universal: left adjoints to the forgetful functors

$$
\text { Bialg } \rightarrow \text { cqBialg } \quad \text { HopfAlg } \rightarrow c q H o p f A l g
$$

- Find the appropriate categorical setting: 1-categories, 2-categories, bicategories, double categories ...

Monoids in monoidal categories

- $(\mathcal{V}, \otimes, I)$ locally presentable symmetric monoidal closed category (main example: Vect $_{k}$)
- \mathcal{V}-Mon category of monoids and monoid morphisms in \mathcal{V} : finitarily monadic over \mathcal{V}, locally presentable, symmetric monoidal
- \mathcal{V}-Mon is the 2-category of one-object enriched \mathcal{V}-categories, \mathcal{V}-functors and \mathcal{V}-natural transformations (2-cells in \mathcal{V}-Mon are also known as intertwiners)
- The embedding \mathcal{V}-Mon $\hookrightarrow \mathcal{V}$-Cat is strict monoidal and reflective, but not 2 -reflective (reflection provided by the pushout in \mathcal{V}-Cat of $\mathcal{A} \leftarrow \mathrm{ob}(\mathcal{A}) \rightarrow \mathbb{1})$

Monoids in monoidal categories

- V-Mon has all conical 2-limits, but lacks other usual 2-limits: cotensors, inserters, equifiers, ...
- Coequalizers in \mathcal{V}-Mon are 2-categorical, but coproducts no; however, \mathcal{V}-Mon has coinserters and coequifiers
Coinserter

$$
A \xrightarrow[g]{f} B \longrightarrow B\langle x\rangle /\langle x f(a)-g(a) x, \forall a \in A\rangle
$$

(in Vect ${ }_{k}$)
Coequifier

$$
\underset{9}{\mathrm{~A} \xrightarrow[\alpha \Downarrow \beta]{\alpha} \mathrm{B}} \longrightarrow \mathrm{~B} /\langle\alpha-\beta\rangle
$$

(in Vect ${ }_{k}$)

Comonoids in monoidal categories

- \mathcal{V}-Comon $=\left(\mathcal{V}^{\text {op }} \text {-Mon }\right)^{\text {op }}$ 2-category of comonoids and comonoid morphisms in \mathcal{V}
- \mathcal{V}-Comon as an ordinary category: comonadic over \mathcal{V}, locally presentable, symmetric monoidal closed
- \mathcal{V}-Comon as a symmetric monoidal 2-category:

$$
\text { a 2-cell } A{\underset{v}{\Downarrow_{\alpha}} \mathrm{f}}_{\mathrm{f}}^{\mathrm{f}} \text { is } \alpha: \mathbf{A} \rightarrow \mathbf{I}, \quad(\alpha \otimes \mathrm{f}) \Delta=(g \otimes \alpha) \Delta
$$

E.g. if A is a (coquasi)bialgebra, then a 2 -cell in \mathcal{V}-Comon $A \underbrace{\|_{\epsilon}}_{1_{A}} A$ is precisely a left integral of A.

- 2-limits and 2-colimits: dualise the results for \mathcal{V}-Mon

Bimonoids and two-dimensional monad theory

- Monoids in \mathcal{V}-Comon: bimonoids (equivalently, T-algebras for the free monoid monad $T X=\coprod_{n \geq 0} X^{\otimes n}$ on \mathcal{V}-Comon)
- T is in fact a 2 -monad on the 2-category \mathcal{V}-Comon
- Hence strict/pseudo/(co)lax T-algebras and strict/pseudo/ (co)lax T-morphisms are available

$$
\begin{gathered}
\mathrm{T}-\mathrm{Alg}_{\text {strict }} \longrightarrow \mathrm{T}-\mathrm{Alg}_{\text {pseudo }} \longrightarrow \mathrm{Ps}-\mathrm{T}-\mathrm{Alg} \mathrm{~V} \text {-Comon } \\
\end{gathered}
$$

Bimonoids and two-dimensional monad theory

- The 2-category of strict T-algebras and strict T-morphisms

$$
T-\text { Alg }_{\text {strict }}=\mathcal{V} \text {-Bimon }
$$

(the familiar (2-)category of bimonoids and bimonoid morphisms)

$$
\text { a 2-cell is } \mathbf{A} \underbrace{\Downarrow_{\alpha}}_{g} \mathbf{B} \text { is } \alpha: \mathbf{A} \rightarrow \mathbf{I}\left\{\begin{array}{l}
(\alpha \otimes \mathrm{f}) \Delta=(g \otimes \alpha) \Delta \\
\alpha \mathbf{u}=\mathrm{u} \\
\alpha m=m(\alpha \otimes \alpha)
\end{array}\right.
$$

- [Porst 2008] V-Bimon as ordinary category: locally presentable, monadic over \mathcal{V}-Comon, with zero object

Bimonoids and two-dimensional monad theory

- The 2-category of strict T-algebras and pseudo-T-morphisms:

$$
\mathcal{V} \text {-Bimon }{ }_{p s}
$$

- Objects: \mathcal{V}-bimonoids again
- Pseudo-T-morphisms: comonoid morphisms which preserve unit and multiplication up to coherent iso-2-cells $f_{0}: I \rightarrow I$ scalar, $f_{2}: A \otimes A \rightarrow I$ (twist cocycle)

Bimonoids and two-dimensional monad theory

- [Blackwell-Kelly-Power 1989] For a 2-monad T with rank on a complete and cocomplete 2-category, the embedding

$$
T-A l g_{\text {strict }} \rightarrow T-A l g_{\text {pseudo }}
$$

has left adjoint.

- But \mathcal{V}-Comon fails to be 2-cocomplete, although the free monoid monad is (at least!) finitary as an ordinary functor.
- Need another approach.

Bimonoids and two-dimensional monad theory

- Algebras for ordinary monads are reflexive coequalizers of free ones

$$
\left(\mathrm{T}^{2} \mathrm{~A}, \mu \mathrm{~T}\right) \stackrel{\mathrm{T} \eta}{\mu} \underset{\mathrm{Ta}}{\mu}(\mathrm{TA}, \mu) \longrightarrow \mathrm{A}
$$

- The corresponding 2-categorical notion: reflexive codescent data
- [Lack 2002] If T is a 2-monad for which T - Alg $_{\text {strict }}$ admits codescent objects, then

$$
\mathrm{T}-\mathrm{Alg}_{\text {strict }} \rightarrow \mathrm{T}-\mathrm{Alg}_{\text {pseudo }}
$$

has left adjoint.

- This is the case in particular if $T-$ Alg $_{\text {strict }}$ admits coinserters and coequifiers.

Bimonoids and two-dimensional monad theory

- But \mathcal{V}-Mon has coinserters and coequifiers for any \mathcal{V}; in particular, substitute \mathcal{V} by \mathcal{V}-Comon
- Theorem The embedding

$$
\mathcal{V} \text {-Bimon } \rightarrow \mathcal{V} \text {-Bimon }{ }_{\text {ps }}
$$

has a left adjoint.

- That is, any pseudo-morphism can be strictified: factorise it as the identity "on objects" followed by a strict morphism

$$
A \xrightarrow{\left(f, f_{2}\right)} B \quad A \xrightarrow{\left(1, f_{2}\right)} A_{f_{2}} \xrightarrow{(f, 1)} B
$$

- Similarity with the (bo,ff) factorisation system on Cat

Coquasi-bimonoids

- \mathcal{V}-cQBimon = Ps - T-Alg: the 2-category of pseudo-T-algebras and pseudo-T-morphisms
- Objects: pseudo-monoids $(A, u: I \rightarrow A, m: A \otimes A \rightarrow A)$ in the category of comonoids (e.g. coquasi-bimonoids)

- 1-cells: $A \xrightarrow{\left(f, f f_{2}, f_{0}\right)} B$

- 2-cells: ...

Coquasi-bimonoids: coherence and strictification

- [Power 1989] If T is a 2-monad on a 2-category endowed with an enhanced factorisation system (E, M) such that if $m \in M$ and $m f \cong 1$ then $\mathrm{fm} \cong 1$, and T preserves the E class, then every pseudo T-algebra is equivalent to a strict one.
- However, this cannot happen here (take for example the quasi-Hopf algebra H(2) which is not twist equivalent to any Hopf algebra)
- [Lack 2002] If T is a 2-monad for which T - Alg $_{\text {strict }}$ admits codescent objects, then also

$$
T-\text { Alg }_{\text {strict }} \rightarrow \mathrm{Ps}-\mathrm{T}-\mathrm{Alg}
$$

has a left adjoint.

- Consequence: there exists a left adjoint to the embedding

$$
\mathcal{V} \text {-Bimon } \rightarrow \mathcal{V} \text {-cQBimon }
$$

but the components of the unit cannot always be equivalences in \mathcal{V}-cQBimon.

Work in progress

- Description of the left adjoint.
- Limits and colimits of \mathcal{V}-cQBimon.
- Here only the 2-categorical machinery was used.
- In fact, \mathcal{V}-Comon has a righter structure: it is a fibrant double category, and all the subsequent constructions translate into this context.
- In particular, the associated horizontal bicategory of \mathcal{V}-comonoids and bicomodules is locally complete and cocomplete and has all right liftings and extensions.
- Also, the notion of (coquasi-)Hopf \mathcal{V}-monoid fits naturally, as a left autonomous map pseudomonoid in \mathcal{V}-Comon [Lopez-Franco 2009].

