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Background

Modal logic is about Kripke frames

(X ,X
r9 X )

These are coalgebras for the
powerset functor

X → PX , x 7→ {x ′ ∈ X | r(x ′, x)}

More generally, replace P by any functor T : Set→ Set

T -coalgebras capture LTS, (non)deterministic automata, Mealy machines,
probabilistic/stochastic transition systems, . . .

Reasoning about T -coalgebras: coalgebraic (modal) logic (L, δ)

Logic L : BA→ BA functor

Semantics δ : LP → PT op natural transformation
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Outline

Institution Ins of Set-based coalgebraic logic
[Kurz-Hennicker02, Pattinson03, Ĉırstea06, . . . ]

Ins restricts to an institution Inswpb having

– signatures: Set-functors which preserve weak pullbacks

– morphisms between signatures: weakly cartesian natural transformations
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Positive coalgebraic logic

Logic Axiomatization of the positive fragment of modal logic
[Dunn95]

Dunn’s result naturally generalize from modal logic to
coalgebraic logic [B-Kurz-Velebil13]

Coalgebra Looking at simulations instead of bisimulations? Posets
provide the environment for that

Category Theory Posets link universal coalgebra and domain theory

Technical issue: to ensure the monotonicity of modal operators, need to
work in an ordered setting (Poset-enriched category theory)
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ABC of Poset-enriched category theory

Poset-category: hom-sets are ordered and composition preserves this order

Poset-functor (locally monotone): functor preserving the order on the
hom-(po)sets

Poset-natural transformation: natural transformation
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What a Poset-enriched institution might be?

Ins = (Sign,Mod, Sen,�)

I Sign Poset-category

I Mod : Signop → Poset-Cat

→ Cat

locally monotone functor

I Sen : Sign→ Poset

→ Set

locally monotone functor

I For each signature T , a relation |Mod(T )| �9 Sen(T ) such that

M � Sen(σ)(ϕ) ⇐⇒ Mod(σ)(M) � ϕ

(for each σ : T → T̂ , M ∈ Mod(T̂ ), ϕ ∈ Sen(T ))
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Outline

Institution Ins of Set-based coalgebraic logic
[Kurz-Hennicker02, Pattinson03, Ĉırstea06, . . . ]

Ins restricts to an institution Inswpb having

– signatures: Set-functors which preserve weak pullbacks

– morphisms between signatures: weakly cartesian natural transformations

Institution Ins′ of Poset-based coalgebraic logic, using the contravariant
adjunction Poset− DLat

Ins′ restricts to an institution Insex-sq having

– signatures: locally monotone functors which preserve exact squares

– morphisms between signatures: weakly exact natural transformations
Exact square
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Main result

Theorem

There is a (liberal) morphism of institutions between:

I The institution of Set-functors which preserve weak pullbacks and
their strongly finitary coalgebraic logic Inswpb

I The institution of Poset-functors which preserve exact squares and
their strongly finitary coalgebraic logic Ins′ex-sq

sending a signature to its posetification, and assigning to each logic its
positive fragment.
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Two institutions of (positive) coalgebraic logic
Signatures

Category of signatures

Sign = [Set,Set]op

- Signature: functor
T : Set→ Set
- Morphism T → T̂ of signatures:
natural transformation σ : T̂ → T
(notice the change of direction!)

Poset-category of signatures

Sign′ = [Poset,Poset]op

- Signature: locally monotone
functor T ′ : Poset→ Poset
- Morphism T ′ → T̂ ′ of signatures:
monotone natural transformation
σ : T̂ ′ → T ′
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Two institutions of (positive) coalgebraic logic
A functor between signatures

Sign = [Set,Set]op Φ // Sign′ = [Poset,Poset]op

1 For T : Set→ Set, define

Φ(T ) := LanD(DT ) : Poset→ Poset Posetification

2 For σ : T̂ → T , Φ(σ) is the unique monotone natural transformation
such that

DT̂
Dσ //

∼=
��

DT

∼=
��

Φ(T̂ )D
Φ(σ)

// Φ(T )D
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Two institutions of (positive) coalgebraic logic
A functor between signatures
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Two institutions of (positive) coalgebraic logic
Models

Reduct functor

Mod : [Set, Set]→ Cat

Reduct Poset-functor

Mod′ : [Set,Set]→ Poset− Cat

1 Models: coalgebras
T � // Coalg(T )

2 Morphisms between models: coalgebra morphisms

T̂

σ

��

� // Mod(T̂ ) = Coalg(T̂ )

Mod(σ)

��

X
ĉ→ T̂ X_

��

T � // Mod(T ) = Coalg(T ) X
ĉ→ T̂ X

σ→ TX

Set-examples Poset-examples
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Two institutions of (positive) coalgebraic logic
A transformation of models

SetT <<

D //
> Poset Φ(T )cc

C
oo

Coalg(T )

OO

D̃ //
> Coalg(Φ(T ))

OO

C̃

oo

The adjunction C a D
lifts to coalgebras

There is a monotone-natural transformation

β : Mod −→ Mod′ ◦ Φ

whose components βT : Coalg(T )→ Coalg(Φ(T )) are

X
c→ TX � // DX

Dc→ DTX ∼= Φ(T )DX

Notice that each component βT has a left adjoint!
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The institution of Set-coalgebraic logic
Sentences

Context: standard contravariant adjunction of propositional logic

Setop

P

33⊥ BA
S

rr

Signature T : Set→ Set
T -models: T -coalgebras

– P maps a set to the BA
of its subsets

– S maps a BA to the set
of its ultrafilters

Coalgebraic logic, abstractly

Syntax: functor L : BA→ BA

Semantics: natural transformation δ : LP → PT op

– Alg(L) is a variety

– L has a presentation by
operations and equations

– L preserves sifted colimits

– L is determined by its restriction
to the f. g. free BAs
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The institution of Set-coalgebraic logic
Sentences

– Recall: predicate liftings of arity n are natural transformations

Set(−, 2n)→ Set(T−, 2)

– Equivalently, elements of Set(T (2n), 2) ∼= UPT opSFn
(here F a U : BA → Set is the monadic adjunction between the free BA functor and the forgetful one)

– Define LFn ::= PT opSFn on free finitely generated BA and extend
continuously to all BA (L = LanJ(PT opSJ), with J : BAf → BA the inclusion

functor)

– The semantics δ : LP → PT is the transpose of the canonical morphism
L→ PT opS
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The institution of Set-coalgebraic logic
Sentences

– The natural transformation δ provides one-step semantics

– To pass to the global semantics, have to iterate the one-step logic

constructor L and form the initial L-algebra LI
in→ I

The functor Sen : Sign = [Set, Set]op → Set

1 The set of T -sentences

T � // Sen(T ) = UI

2 Translation of sentences

T̂

σ

��

7→

LP
δ //

λP
��

PT op

Pσ
��

LI
in //

��

I

��

UI

Sen(σ)
��

T L̂P
δ̂ // PT̂ LÎ

λ // L̂Î
în // Î UÎ
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The institution of Set-coalgebraic logic
Satisfaction relation

– T -model (coalgebra) X
c−→ TX

– L-algebra of subsets LPX
δ−→ PT opX

Pc−→ PX

– Unique L-algebra morphism I
J−K(X ,c)→ PX , ϕ 7→ JϕK(X ,c)

– Satisfaction relation

x �(X ,c) ϕ ⇐⇒ x ∈ JϕK(X ,c) (X , c) � ϕ ⇐⇒ x �(X ,c) ϕ, ∀x ∈ X

Theorem

The construction Ins = (Sign,Mod,Sen,�) is an institution.

Examples
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Positive coalgebraic logic

Setop
T op

;;

P

22⊥ BA
S

rr
Lbb

Posetop DLat

I P ′ maps a poset to the DLat of
its upsets.

I S ′ associates to any DLat the
poset of prime filters.

Poset-Coalgebraic logic

Syntax: locally monotone functor L′ : BA→ BA

Semantics: monotone natural transformation δ′ : L′P ′ → P ′T ′op

I Alg(L) is an ordered variety

I L has a presentation by
monotone operations and
equations

I L preserves Poset-sifted colimits

I L is determined by its restriction
to free f. g. BAs
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Positive coalgebraic logic

Setop

P

22⊥ BA
S

rr

Posetop ⊥T ′op
99

P′
22 DLat

S ′
qq

L′cc

I P ′ maps a poset to the DLat of
its upsets.

I S ′ associates to any DLat the
poset of prime filters.

Poset-Coalgebraic logic

Syntax: locally monotone functor L′ : DLat→ DLat

Semantics: monotone natural transformation δ′ : L′P ′ → P ′T ′op

I Alg(L) is an ordered variety

I L has a presentation by
monotone operations and
equations

I L preserves Poset-sifted colimits

I L is determined by its restriction
to free f. g. DLs on discrete
posets
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Positive coalgebraic logic

– Predicate liftings of arity p are monotone natural transformations

Poset(−, [p,2])→ Poset(T ′−,2), (p finite poset)

– That is, elements of the poset Poset(T ′([p,2]),2) ∼= U ′P ′T ′opS ′F ′p
(here [X , Y ] is the poset of monotone maps X → Y , and F ′ a U′ : DLat → Poset is the Poset-monadic adjunction between

the free DL functor and the forgetful one)

– Define L′F ′Dn ::= P ′T ′opS ′F ′Dn on free finitely generated DL on
discrete generators and extend continuously to all DL

– The semantics δ : L′P ′ → P ′T ′ is the transpose of the canonical
morphism L′ → P ′T ′opS ′

– Logic (L′, δ′) is expressive [Kapulkin-Kurz-Velebil12], for finitary T ′

which preserves embeddings
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The institution of Poset-coalgebraic logic
Sentences and satisfaction relation

– Sen′ : Sign′ → Poset locally monotone functor

T ′ : Poset→ Poset � // Sen(T ′) := U ′I ′ poset of sentences

(where L′I ′ −→ I ′ is the initial L′-algebra)

– T ′-coalgebra X
c→ T ′X =⇒ J−K(X ,c) : I ′ → P ′X

(a formula is sent to the upperset of states satisfying it)

– Satisfaction relation

x �(X ,c) ϕ⇐⇒ x ∈ JϕK(X ,c)

Monotone wrt simulations

, (X , c) � ϕ⇐⇒ ∀x ∈ X , x �(X ,c) ϕ

About simulations
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The institution of Poset-based coalgebraic logic

Theorem

The construction Ins′ = (Sign′,Mod′,Sen′,�) is an institution, where:

1 Sign′ = [Poset,Poset]op

2 Mod′ : Sign′
op −→ Poset-Cat −→ Cat, Mod(T ) = Coalg(T )

3 Sen′ : Sign′ −→ Poset −→ Set, Sen′(T ) = U ′I ′

4 The satisfaction relation � ⊆ |Mod′(T ′)| × Sen(T ′) is defined as
earlier
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The positive fragment of coalgebraic logic

Theorem (B-Kurz-Velebil13)

Let T : Set→ Set such that:

I T preserves weak pullbacks

I T ′ = LanD(DT ) is the posetification of T

I (L, δ) and (L′, δ′) are the (strongly finitary) logics of T and T ′

Then L′ is the positive fragment of L. More precisely, there is an
isomorphism

DLat

W
��

L′ //

∼=

DLat

W
��

BA
L
// BA

compatible with semantics δ : LP → PT op and δ′ : L′P ′ → P ′T ′op
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Two institutions of (positive) coalgebraic logic
Relating the sentences

DLat

W
��

L′ //

∼=

DLat

W
��

BA
L
// BA

Apply the isomorphism above to construct a monotone natural
transformation between sentences

α : Sen′ ◦ Φ→ Sen

restricted to signature functors T which preserve weak pullbacks and
weakly cartesian natural transformations

L′I ′
in′

//

��

I ′

��

U ′I ′

αT

��

L′WI ∼= WLI
W in //WI U ′WI ∼= UI

Example
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Main result

Theorem

There is a (liberal) morphism of institutions between:

I The institution of Set-functors which preserve weak pullbacks and
their strongly finitary coalgebraic logic Inswpb

I The institution of Poset-functors which preserve exact squares and
their strongly finitary coalgebraic logic Ins′ex-sq

sending a signature to its posetification, and assigning to each logic its
positive fragment.
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Ĉırstea06 An institution of modal logics for coalgebras, J.
Logic Alg. Progr. 67(2006)

Dunn95 Positive Modal Logic, Studia Logica 55(1995)

Kapulkin-Kurz-Velebil12 Expressiveness of Positive Coalgebraic Logic,
Adv. Modal Logic 9(2012)

Kurz-Hennicker02 On institutions for modular coalgebraic
specifications, TCS 280(2002)

Kurz-Pattinson00 Coalgebras and Modal Logic for Parameterised
Endofunctors. CWI Tech. Rep. (2000)

Pattinson03 Translating logics for coalgebras, WADT2002



Thank you!



Thank you!



Thank you!



Examples

1 T = P (finite) powerset functor

Logic LA is the BA generated by �a, for a ∈ A, wrt �
preserving finite meets

Semantics δX : LPX → PPopX , �a 7→ {b ∈ PX | b ⊆ a}

2 T = N the neighbourhood functor.

Logic LA is the BA generated by �a, for a ∈ A, no equations

Semantics δX : LPX → PN opX , �a 7→ {s ∈ NX | a ∈ s}
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More examples...

1 T =M the (finite) multisets functor

Logic LA is the BA generated by ♦na, for a ∈ A, wrt ♦n
preserving finite joins

Semantics δX : LPX → PMopX ,
♦na 7→ {ϕ ∈MX | card

x∈a
ϕ(x) ≥ n}, for n ∈ N

2 T = D (finite) probability functor

Logic LA is the BA generated by ♦qa, for a ∈ A, wtr ♦q
preserving finite joins

Semantics δX : LPX → PDopX , ♦qa 7→ {d ∈ DX |
∑
x∈a

d(x) ≥ q}

for q ∈ Q ∩ [0, 1]
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Posetifications - or how to extend functors from sets to
posets

Functor T : Set→ Set

Extension
Locally monotone functor
T ′ : Poset→ Poset

Set
D //

T
��

Poset

T ′

��

∼=

Set
D // Poset

Posetification Extension with universal property T ′ = LanD(DT )
Poset-left Kan extension
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Theorem (B-Kurz-Velebil13)

1 Existence

Posetification exists for any functor T : Set→ Set

2 A characterisation of left Kan extensions to posets

For locally monotone T ′ : Poset→ Poset, TFAE
I T ′ is LanD(DT ) for some T : Set→ Set
I T ′ preserves discrete posets and coinserters of simplicial resolutions

3 Taking posetifications is functorial

[Set,Set] −→ [Poset,Poset], T 7→ LanD(DT )

(proof technique: use a ”simplicial representation” of posets )
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Examples

Kripke functors

T ::= Id | TX0 | T0 + T1 | T0 × T1 | TA

Posetifications are as expected:

I Posetification of IdSet is IdPoset

I Posetification of the constant functor at set X0 is the constant
functor at discrete poset (X0,=)

I Posetification of (co)product functor is again the (co)product, this
time in Poset

I Posetification of exponential functor TX = XA is again exponential in
Poset
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Examples (continued)

Motivating example: T = P, the (finite) power-set functor

Posetification is the (finitely generated) convex power-set functor, with the
Egli-Milner order.

Distribution functor DX = {d : X → [0, 1] |
∑

x∈X d(x) = 1}
Coalgebras: Markov chains
Posetification: D′(X ,≤) is DX , with order given by

d ≤ d ′ ⇔ ∃ω ∈ D(X × X ) .


ω(x , y) > 0⇒ x ≤ y∑

y∈X ω(x , y) = d(x)∑
x∈X ω(x , y) = d ′(y)

Multiset functor MX = {ϕ : X → N | supp(ϕ) <∞}
Coalgebras: multigraphs
Posetification: still to compute...
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Simplicial representation of posets

X poset =⇒ diagram of (discrete po)sets: X1

d0 //

d1

// X0

I X0 is the underlying set of X

I X1 is the set of comparable pairs X1 = {(x , x ′) ∈ X | x ≤ x ′}
I d0, d1 : X1 → X0 the usual projections

The coinserter of the diagram is X (coinserter = ordered analogue of a

coequalizer)

The left Kan extension (posetification) of any T : Set→ Set

Put T ′X := coins(Td0,Td1), for a poset X
The assignment X 7→ T ′X is locally monotone, coincides with T on
discrete posets and can be exhibited as left Kan extension of DT along D
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Example

I T̂ : Set→ Set, T̂ X = 2× XA

T̂ -coalgebras are deterministic automata with alphabet A and binary
outputs, deciding if a state is accepting or not

I T : Set→ Set, TX = (PX )A

T -coalgebras are LTS, with label set A

I Natural transformation σ : T̂ → T , σX : 2× XA → (PX )A,
σX (i , f )(a) = {f (a)}

Then Mod(σ) : Coalg(T̂ )→ Coalg(T ) transforms a deterministic
automata into a LTS forgetting whether the resulting state is
accepting outputs
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Poset-functors and their coalgebras

T : Poset→ Poset locally monotone functor

T -coalgebras

Partially ordered set of states X = (X ,≤)

Monotone transition map X c→ TX
Monotone translation map X f→ Y

X f //

c
��

Y
d
��

TX Tf // TY
Poset-category Coalg(T )

Examples

- ordered automata: X → XA × 2, with A the (discrete)
input set

x ≤ x ′

y y ′

- ordered Kripke frames: X → PcX , with Pc the convex powerset functor
ordered by

U,V ∈ PcX , U v V ⇔ ( ∀x ∈ U ∃y ∈ V . x ≤ y ) ∧ ( ∀y ∈ V ∃x ∈ U. x ≤ y )
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Monotone relations

A monotone relation X
r9 Y is a monotone map r : Y op × X → 2

y ′ ≤ y ∧ r(y , x) ∧ x ≤ x ′ =⇒ r(y ′, x ′)

Each monotone map f : X → Y produce two (adjoint) monotone relations:

X
f♦9 Y f♦(y , x) ⇐⇒ y ≤ f (x)

Y
f ♦9 X f ♦(x , y) ⇐⇒ f (x) ≤ y

Each monotone relation X
r9 Y can be represented as a cospan

Y
r0 // Coll(r) X

r1oo , r = r♦0 ◦ r1♦

where the collage Coll(r) is Y + X , with order

y ≤ y ′ x ≤ x ′ r(y , x)
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Relation lifting

T : Poset→ Poset locally monotone functor , Y
r9 X monotone relation

Y
r0

""

X
r1

||

TY
Tr0

$$

TX
Tr1

zz

Coll(r) T Coll(r)

r = r♦0 ◦ r1♦ Relation lifting RelT (r) = (Tr0)♦ ◦ (Tr1)♦

RelT (r)(v , u) ⇐⇒ Tr0(v) ≤ Tr1(u) in T Coll(r)

T preserves exact squares =⇒ well-behaved relation lifting
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Exact squares

Exact square:

E
p1 //

p0

��

≤

Y

g
��

X
f
// Z

and

E

=

�
p0♦
//

U
p♦1
��

Y

U
g♦

��

X �
f♦
// Z

(exact square = the ordered analogue of weak pullback)
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Exact squares

Exact square:

E
p1 //

p0

��

≤

Y

g
��

X
f
// Z

and

f (x) ≤ g(y)

⇓

∃ w ∈ E . (x ≤ α(w) ∧ β(w) ≤ y)

(exact square = the ordered analogue of weak pullback)
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Relation lifting - examples

1 T = Pc the convex powerset X
r9 Y

RelPc (r)(v , u)⇐⇒ (∀y ∈ v ∃x ∈ u. r(y , x))∧(∀x ∈ u ∃y ∈ v . r(y , x))

(here u ∈ Pc(X ), v ∈ Pc(Y ) are convex subsets)

2 T = (−)A × 2

RelT (r)(v , u)⇐⇒ (∀a ∈ A, r(xa, ya)) ∧ (i ≤ j)

where u = ((xa)a∈A, i) ∈ TX , v = ((ya)a∈A, j) ∈ TY
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Simulations

Locally monotone functor T ′ : Poset→ Poset

Coalgebras X
c→ T ′X , Y

d→ T ′Y

A monotone relation X
r9 Y is called a simulation if

x //

r

c(x)

y // d(y)

X

≤

�
c♦
//

Ur
��

TX
URelT (r)
��

Y �
d♦
// TY

A coalgebra morphism X
f→ Y induces simulations X

f♦9 Y and Y
f ♦9 X

Simulations are closed under composition if T ′ preserves exact squares

Satisfaction relation is monotone wrt simulation order on states:

r(y , x) ∧ (x � ϕ) ∧ (ϕ ≤ ψ) =⇒ (y � ψ)

for all simulations X
r9 Y , states x ∈ X , y ∈ Y and formulae ϕ,ψ ∈ I ′
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Motivating example

Signature T = P (finite) powerset functor

Logic LA is the BA generated by (�a)a∈A such that

�(a ∧ b) = �a ∧�b

Semantics δX : LPX → PPopX , �a 7→ {b ∈ PX | b ⊆ a}

Posetification T ′ = Pc (finitely generated) convex powerset functor

Logic L′A is the DLat generated by (�a,♦a)a∈Ab such that
�(a ∧ b) = �a ∧�b, ♦(a ∨ b) = ♦a ∨ ♦b

�a ∧ ♦b ≤ ♦(a ∧ b), �(a ∨ b) ≤ ♦a ∨�b

Semantics

δ′X : L′P ′X → P ′P ′op
X ,

{
�a 7→ {b ∈ PX | b ⊆ a}
♦a 7→ {b ∈ PX | b ∩ a 6= ∅}

Translation L′W ∼= WL induce the DL morphism αP

αP(♦ϕ) = ¬�¬αP(ϕ) αP(�ϕ) = �αP(ϕ)
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