An institutional approach to positive coalgebraic logic

Adriana Balan1 Alexander Kurz2
Jiří Velebil3

1University Politehnica of Bucharest, Romania
2University of Leicester, UK
3Czech Technical University in Prague, Czech Republic

22nd International Workshop on Algebraic Development Techniques
September 2014 – Sinaia, Romania
Background

Modal logic is about Kripke frames

$$\langle X, X \xrightarrow{r} X \rangle$$

These are coalgebras for the powerset functor

$$X \to \mathcal{P}X, \ x \mapsto \{x' \in X \mid r(x', x)\}$$

More generally, replace P by any functor $T : \text{Set} \to \text{Set}$

T-coalgebras capture LTS, (non)deterministic automata, Mealy machines, probabilistic/stochastic transition systems, . . .

Reasoning about T-coalgebras: coalgebraic (modal) logic (L, δ)

Logic $L : \text{BA} \to \text{BA}$ functor

Semantics $\delta : LP \to PT^{\text{op}}$ natural transformation
Outline

Institution \textbf{Ins} of Set-based coalgebraic logic
[Kurz-Hennicker02, Pattinson03, Cîrstea06, ...]

\textbf{Ins} restricts to an institution \textbf{Ins}_{wpb} having
– signatures: Set-functors which preserve weak pullbacks
– morphisms between signatures: weakly cartesian natural transformations
Positive coalgebraic logic

Logic Axiomatization of the positive fragment of modal logic [Dunn95]

Dunn’s result naturally **generalize** from modal logic to coalgebraic logic [B-Kurz-Velebil13]

Coalgebra Looking at simulations instead of bisimulations? Posets provide the environment for that

Category Theory Posets link universal coalgebra and domain theory

Technical issue: to ensure the monotonicity of modal operators, need to **work in an ordered setting** (Poset-enriched category theory)
ABC of Poset-enriched category theory

Poset-category: hom-sets are ordered and composition preserves this order

Poset-functor (locally monotone): functor preserving the order on the hom-(po)sets

Poset-natural transformation: natural transformation
What a Poset-enriched institution might be?

\[\textbf{Ins} = (\text{Sign}, \text{Mod}, \text{Sen}, \models) \]

- **Sign** Poset-category

- **Mod**: \(\text{Sign}^{op} \to \text{Poset-Cat} \) locally monotone functor

- **Sen**: \(\text{Sign} \to \text{Poset} \) locally monotone functor

- For each signature \(T \), a relation \(|\text{Mod}(T)| \models \overset{\models}{\to} \text{Sen}(T) \) such that

\[
M \models \text{Sen}(\sigma)(\varphi) \iff \text{Mod}(\sigma)(M) \models \varphi
\]

(for each \(\sigma : T \to \hat{T}, M \in \text{Mod}(\hat{T}), \varphi \in \text{Sen}(T) \))

A. Balan, A. Kurz, J. Velebil
An institutional approach to positive coalgebraic logic
WADT2014
What a Poset-enriched institution might be?

\textbf{Ins} = (\text{Sign, Mod, Sen, } \models)

- **Sign** category

- **Mod**: \text{Sign}^{\text{op}} \to \text{Poset-Cat} \to \text{Cat} \quad \text{functor}

- **Sen**: \text{Sign} \to \text{Poset} \to \text{Set} \quad \text{functor}

- For each signature \(T \), a relation \(\models \text{Mod}(T) \models \to \text{Sen}(T) \) such that

\[M \models \text{Sen}(\sigma)(\varphi) \iff \text{Mod}(\sigma)(M) \models \varphi \]

(for each \(\sigma : T \to \hat{T}, M \in \text{Mod}(\hat{T}), \varphi \in \text{Sen}(T) \))
Outline

Institution Ins of Set-based coalgebraic logic
[Kurz-Hennicker02, Pattinson03, Cîrstea06, ...]

Ins restricts to an institution Ins_{wpb} having
– signatures: Set-functors which preserve weak pullbacks
– morphisms between signatures: weakly cartesian natural transformations
Outline

Institution \textbf{Ins} of Set-based coalgebraic logic
[Kurz-Hennicker02, Pattinson03, Cîrstea06, \ldots]

\textbf{Ins} restricts to an institution \textbf{Ins}_{wpb} having
– signatures: Set-functors which \textbf{preserve weak pullbacks}
– morphisms between signatures: \textbf{weakly cartesian} natural transformations

Institution \textbf{Ins}' of \textbf{Poset-based} coalgebraic logic, using the contravariant
adjunction Poset – DLat

\textbf{Ins}' restricts to an institution \textbf{Ins}_{ex-sq} having
– signatures: locally monotone functors which \textbf{preserve exact squares}
– morphisms between signatures: \textbf{weakly exact} natural transformations
Main result

Theorem

There is a (liberal) morphism of institutions between:

- The institution of Set-functors which preserve weak pullbacks and their strongly finitary coalgebraic logic Ins_{wpb}

- The institution of Poset-functors which preserve exact squares and their strongly finitary coalgebraic logic $\text{Ins}'_{\text{ex-sq}}$

sending a signature to its posetification, and assigning to each logic its positive fragment.
Two institutions of (positive) coalgebraic logic

Signatures

Category of signatures

\[\text{Sign} = [\text{Set}, \text{Set}]^{\text{op}} \]

- Signature: functor \(T : \text{Set} \to \text{Set} \)
- Morphism \(T \to \hat{T} \) of signatures: natural transformation \(\sigma : \hat{T} \to T \)

(notice the change of direction!)

Poset-category of signatures

\[\text{Sign}' = [\text{Poset}, \text{Poset}]^{\text{op}} \]

- Signature: locally monotone functor \(T' : \text{Poset} \to \text{Poset} \)
- Morphism \(T' \to \hat{T}' \) of signatures: monotone natural transformation \(\sigma : \hat{T}' \to T' \)
Two institutions of (positive) coalgebraic logic

Signatures

- **Category of signatures**
 \[
 \text{Sign} = \text{[Set, Set]}^{\text{op}}
 \]

 - Signature: functor
 \[
 T : \text{Set} \to \text{Set}
 \]
 - Morphism \(T \to \hat{T} \) of signatures:
 natural transformation \(\sigma : \hat{T} \to T \)
 (notice the change of direction!)

- **Poset-category of signatures**
 \[
 \text{Sign'} = \text{[Poset, Poset]}^{\text{op}}
 \]

 - Signature: **locally monotone** functor
 \[
 T' : \text{Poset} \to \text{Poset}
 \]
 - Morphism \(T' \to \hat{T}' \) of signatures:
 monotone natural transformation
 \[
 \sigma : \hat{T}' \to T'
 \]
Two institutions of (positive) coalgebraic logic

A functor between signatures

\[\text{Sign} = [\text{Set}, \text{Set}]^{\text{op}} \xrightarrow{\Phi} \text{Sign}' = [\text{Poset}, \text{Poset}]^{\text{op}} \]

1. For \(T : \text{Set} \to \text{Set} \), define
 \[\Phi(T) := \text{Lan}_D(DT) : \text{Poset} \to \text{Poset} \]

2. For \(\sigma : \hat{T} \to T \), \(\Phi(\sigma) \) is the unique monotone natural transformation such that

\[
\begin{array}{ccc}
D\hat{T} & \xrightarrow{D\sigma} & DT \\
\downarrow \Phi(\hat{T})D & & \downarrow \Phi(T)D \\
\Phi(\hat{T})D & \xrightarrow{\Phi(\sigma)} & \Phi(T)D
\end{array}
\]
Two institutions of (positive) coalgebraic logic

A functor between signatures

\[
\text{Discrete Poset-functor}
\]

\[
\begin{array}{c}
\text{Sign} = [\text{Set, Set}]^{\text{op}} \\
\Phi \\
\text{Sign}' = [\text{Poset, Poset}]^{\text{op}}
\end{array}
\]

1. For \(T : \text{Set} \to \text{Set} \), define

\[
\Phi(T) := \text{Lan}_D(DT) : \text{Poset} \to \text{Poset}
\]

\(\text{Posetification} \)

2. For \(\sigma : \hat{T} \to T \), \(\Phi(\sigma) \) is the unique monotone natural transformation such that

\[
\begin{array}{c}
D \hat{T} \xrightarrow{D\sigma} DT \\
\downarrow \Phi(\hat{T})D \xrightarrow{\Phi(\sigma)} \Phi(T)D
\end{array}
\]
Two institutions of (positive) coalgebraic logic

Models

Reduct functor

\[\text{Mod} : \text{[Set, Set]} \to \text{Cat} \]

Reduct Poset-functor

\[\text{Mod}' : \text{[Set, Set]} \to \text{Poset} - \text{Cat} \]

1. Models: coalgebras

\[T \xrightarrow{\hat{T}} \text{Coalg}(T) \]

2. Morphisms between models: coalgebra morphisms

\[\hat{T} \xrightarrow{\sigma} T \]

\[\text{Mod}(\hat{T}) = \text{Coalg}(\hat{T}) \]

\[\text{Mod}(T) = \text{Coalg}(T) \]

\[X \xrightarrow{\hat{c}} \hat{T}X \]

\[X \xrightarrow{\hat{c}} \hat{T}X \xrightarrow{\sigma} TX \]
Two institutions of (positive) coalgebraic logic

Reduct functor

\[\text{Mod} : \text{[Set, Set]} \rightarrow \text{Cat} \]

Reduct Poset-functor

\[\text{Mod}' : \text{[Set, Set]} \rightarrow \text{Poset} \rightarrow \text{Cat} \]

1. Models: coalgebras

\[T \rightarrow \text{Coalg}(T) \]

2. Morphisms between models: coalgebra morphisms

\[\hat{T} \rightarrow \text{Mod}(\hat{T}) = \text{Coalg}(\hat{T}) \]

\[\sigma \]

\[\hat{T} \rightarrow \text{Mod}(T) = \text{Coalg}(T) \]

\[X \xrightarrow{\hat{T}} \hat{T}X \]

\[X \xrightarrow{\hat{T}} \hat{T}X \xrightarrow{\sigma} TX \]

A. Balan, A. Kurz, J. Velebil

An institutional approach to positive coalgebraic logic

WADT2014
Two institutions of (positive) coalgebraic logic

A transformation of models

There is a monotone-natural transformation

\[\beta : \text{Mod} \rightarrow \text{Mod}' \circ \Phi \]

whose components \(\beta_T : \text{Coalg}(T) \rightarrow \text{Coalg}(\Phi(T)) \) are

\[X \xrightarrow{c} TX \xleftarrow{T} DX \xrightarrow{Dc} DTX \cong \Phi(T)DX \]

Notice that each component \(\beta_T \) has a left adjoint!

A. Balan, A. Kurz, J. Velebil

An institutional approach to positive coalgebraic logic

WADT2014
The institution of Set-coalgebraic logic

Sentences

Context: standard contravariant adjunction of propositional logic

\[\text{Set}^{\text{op}} \xleftrightarrow{S, U} \text{BA} \]

- \(P\) maps a set to the BA of its subsets
- \(S\) maps a BA to the set of its ultrafilters
The institution of Set-coalgebraic logic

Sentences

Context: standard contravariant adjunction of propositional logic

\[T^{\text{op}} \circlearrowleft \overset{S}{\xrightarrow{\perp}} \text{BA} \circlearrowright \]

Signature \(T : \text{Set} \to \text{Set} \)

\(T \)-models: \(T \)-coalgebras

- \(P \) maps a set to the BA of its subsets
- \(S \) maps a BA to the set of its ultrafilters

Coalgebraic logic, abstractly

Syntax: functor \(L : \text{BA} \to \text{BA} \)

Semantics: natural transformation \(\delta : LP \to PT^{\text{op}} \)

- \(\text{Alg}(L) \) is a variety
- \(L \) preserves sifted colimits
- \(L \) has a presentation by operations and equations
- \(L \) is determined by its restriction to the f. g. free BAs

A. Balan, A. Kurz, J. Velebil
An institutional approach to positive coalgebraic logic
WADT2014
The institution of Set-coalgebraic logic

Sentences

– Recall: predicate liftings of arity n are natural transformations

$$\text{Set}(_, 2^n) \rightarrow \text{Set}(\ T_, 2)$$

– Equivalently, elements of $\text{Set}(\ T(2^n), 2) \cong UPT^{\text{op}} SFn$

(here $F \dashv U : \text{BA} \rightarrow \text{Set}$ is the monadic adjunction between the free BA functor and the forgetful one)

– Define $LFn ::= PT^{\text{op}} SFn$ on free finitely generated BA and extend continuously to all BA ($L = \text{Lan}_J(PT^{\text{op}} SJ)$, with $J : \text{BA}_f \rightarrow \text{BA}$ the inclusion functor)

– The semantics $\delta : LP \rightarrow PT$ is the transpose of the canonical morphism $L \rightarrow PT^{\text{op}} S$
The institution of Set-coalgebraic logic

Sentences

– The natural transformation δ provides one-step semantics
– To pass to the global semantics, have to iterate the one-step logic constructor L and form the initial L-algebra $LI \xrightarrow{\text{in}} I$

The functor $\text{Sen} : \text{Sign} = [\text{Set}, \text{Set}]^\text{op} \to \text{Set}$

1. The set of T-sentences

$$T \xrightarrow{\text{Sen}} \text{Sen}(T) = UI$$

2. Translation of sentences

\[\begin{array}{cccc}
\hat{T} & \xrightarrow{\delta} & PT^\text{op} & \xrightarrow{\text{in}} I \\
\sigma & \Rightarrow & \lambda P & \Rightarrow P\sigma \\
T & \xrightarrow{\delta} & \hat{LP} & \xrightarrow{\text{in}} \hat{I} \\
\end{array} \]

\[\begin{array}{cccc}
\hat{I} & \xrightarrow{\lambda} & \hat{I} & \xrightarrow{\text{in}} I \\
\hat{P} & \xrightarrow{\delta} & \hat{LP} & \xrightarrow{\text{in}} \hat{I} \\
\end{array} \]

A. Balan, A. Kurz, J. Velebil
An institutional approach to positive coalgebraic logic
WADT2014
The institution of Set-coalgebraic logic

Satisfaction relation

- T-model (coalgebra) $X \xrightarrow{c} TX$
- L-algebra of subsets $LPX \xrightarrow{\delta} PT^{op}X \xrightarrow{Pc} PX$
- Unique L-algebra morphism $I \xrightarrow{\lbrack - \rbrack_{(X,c)}} PX$, $\varphi \mapsto \lbrack \varphi \rbrack_{(X,c)}$
- Satisfaction relation

$x \models_{(X,c)} \varphi \iff x \in \lbrack \varphi \rbrack_{(X,c)}$
$(X, c) \models \varphi \iff x \models_{(X,c)} \varphi$, $\forall x \in X$

Theorem

The construction $\text{Ins} = (\text{Sign}, \text{Mod}, \text{Sen}, \models)$ is an institution.
Positive coalgebraic logic

\[
T^{\text{op}} \underset{\mathbf{Set}^{\text{op}}}{\xleftarrow{\downarrow}} \mathbf{BA} \underset{\downarrow}{\xrightarrow{\delta}} L
\]

Coalgebraic logic

Syntax:
- functor $L : \mathbf{BA} \to \mathbf{BA}$

Semantics:
- natural transformation $\delta : L \ P \to P \ T^{\text{op}}$
 - $\text{Alg}(L)$ is a variety
 - L has a presentation by operations and equations
 - L preserves sifted colimits
 - L is determined by its restriction to free f. g. BAs

A. Balan, A. Kurz, J. Velebil

An institutional approach to positive coalgebraic logic

WADT2014
Positive coalgebraic logic

\[
\begin{align*}
\text{Set}^{\text{op}} & \xrightarrow{\bot} \text{BA} \\
\text{Poset}^{\text{op}} & \xrightarrow{\bot} \text{DLat} \\
\end{align*}
\]

\(T^{\text{op}} \circ \text{Poset}^{\text{op}} \xrightarrow{\bot} \text{DLat} \circ L'\)

\(P'\) maps a poset to the DLat of its upsets.

\(S'\) associates to any DLat the poset of prime filters.

Poset-Coalgebraic logic

Syntax: locally monotone functor \(L' : \text{DLat} \to \text{DLat}\)

Semantics: monotone natural transformation \(\delta' : L'P' \to P'T'^{\text{op}}\)

- \(\text{Alg}(L)\) is an ordered variety
- \(L\) preserves Poset-sifted colimits
- \(L\) has a presentation by monotone operations and equations
- \(L\) is determined by its restriction to free f. g. DLs on discrete posets

A. Balan, A. Kurz, J. Velebil

An institutional approach to positive coalgebraic logic

WADT2014
Positive coalgebraic logic

– Predicate liftings of arity \(p \) are monotone natural transformations

\[
\text{Poset}(\neg, [p, 2]) \to \text{Poset}(T' \neg, 2), \quad (p \text{ finite poset})
\]

– That is, elements of the poset \(\text{Poset}(T'([p, 2]), 2) \cong U' P' T'^{\text{op}} S' F' p \)

(here \([X, Y]\) is the poset of monotone maps \(X \to Y \), and \(F' \dashv U' : \text{DLat} \to \text{Poset} \) is the Poset-monadic adjunction between the free DL functor and the forgetful one)

– Define \(L' F' Dn ::= P' T'^{\text{op}} S' F' Dn \) on free finitely generated DL on discrete generators and extend continuously to all DL

– The semantics \(\delta : L' P' \to P' T' \) is the transpose of the canonical morphism \(L' \to P' T'^{\text{op}} S' \)

– Logic \((L', \delta') \) is expressive [Kapulkin-Kurz-Velebil12], for finitary \(T' \) which preserves embeddings
Positive coalgebraic logic

– Predicate liftings of arity p are monotone natural transformations

$$\text{Poset}(-, [p, 2]) \to \text{Poset}(T', -, 2), \quad (p \text{ finite poset})$$

– That is, elements of the poset $\text{Poset}(T'([p, 2]), 2) \cong U' P' T'^{\text{op}} S' F' p$

(Here $[X, Y]$ is the poset of monotone maps $X \to Y$, and $F' \dashv U' : \text{DLat} \to \text{Poset}$ is the Poset-monadic adjunction between the free DL functor and the forgetful one)

– Define $L' F'Dn ::= P' T'^{\text{op}} S' F'Dn$ on free finitely generated DL on discrete generators and extend continuously to all DL

– The semantics $\delta : L' P' \to P' T'$ is the transpose of the canonical morphism $L' \to P' T'^{\text{op}} S'$

– Logic (L', δ') is expressive [Kapulkin-Kurz-Velebil12], for finitary T' which preserves embeddings
The institution of Poset-coalgebraic logic

Sentences and satisfaction relation

- $\text{Sen}' : \text{Sign}' \to \text{Poset}$ \textbf{locally monotone} functor

 $$T' : \text{Poset} \to \text{Poset} \quad \text{iff} \quad \text{Sen}(T') := U'I' \text{ poset of sentences}$$

 (where $L'I' \to I'$ is the initial L'-algebra)

- T'-coalgebra $X \xrightarrow{c} T'X \quad \text{iff} \quad \llbracket \cdot \rrbracket (X, c) : I' \to P'X$

 (a formula is sent to the \textbf{upperset} of states satisfying it)

- Satisfaction relation

 $$x \models_{(X, c)} \varphi \iff x \in \llbracket \varphi \rrbracket (X, c), \quad (X, c) \models \varphi \iff \forall x \in X, \ x \models_{(X, c)} \varphi$$

 \textbf{Monotone wrt simulations}

\textbf{About simulations}

A. Balan, A. Kurz, J. Velebil

\textbf{An institutional approach to positive coalgebraic logic}

WADT2014
The institution of Poset-based coalgebraic logic

Theorem

The construction \(\text{Ins}' = (\text{Sign}', \text{Mod}', \text{Sen}', \models) \) *is an institution, where:*

1. \(\text{Sign}' = [\text{Poset}, \text{Poset}]^{op} \)
2. \(\text{Mod}' : \text{Sign}'^{op} \rightarrow \text{Poset-Cat} \rightarrow \text{Cat}, \quad \text{Mod}(T) = \text{Coalg}(T) \)
3. \(\text{Sen}' : \text{Sign}' \rightarrow \text{Poset} \rightarrow \text{Set}, \quad \text{Sen}'(T) = U'I' \)
4. *The satisfaction relation* \(\models \subseteq |\text{Mod}'(T')| \times \text{Sen}(T') \) *is defined as earlier*
The positive fragment of coalgebraic logic

Theorem (B-Kurz-Velebil13)

Let \(T : \text{Set} \to \text{Set} \) such that:

- \(T \) preserves weak pullbacks
- \(T' = \text{Lan}_D(DT) \) is the posetification of \(T \)
- (\(L, \delta \)) and (\(L', \delta' \)) are the (strongly finitary) logics of \(T \) and \(T' \)

Then \(L' \) is the positive fragment of \(L \). More precisely, there is an isomorphism

\[
\begin{array}{ccc}
\text{DLat} & \xrightarrow{L'} & \text{DLat} \\
\downarrow{\cong} & & \downarrow{\cong} \\
\text{BA} & \xrightarrow{L} & \text{BA}
\end{array}
\]

compatible with semantics \(\delta : LP \to PT^{\text{op}} \) and \(\delta' : L'P' \to P'T'^{\text{op}} \)
Two institutions of (positive) coalgebraic logic

Relating the sentences

\[
\begin{array}{c}
\text{DLat} \xrightarrow{L'} \text{DLat} \\
W \searrow \downarrow \swarrow \nearrow W \\
\text{BA} \xrightarrow{L} \text{BA}
\end{array}
\]

Apply the isomorphism above to construct a \text{monotone} natural transformation between sentences

\[
\alpha : \text{Sen}' \circ \Phi \rightarrow \text{Sen}
\]

restricted to signature functors \(T\) which \text{preserve weak pullbacks} and weakly cartesian natural transformations

\[
\begin{array}{c}
L'W'I' \xrightarrow{\text{in}'} I' \\
\downarrow \searrow \searrow \nearrow W'I' \downarrow U'I'
\end{array}
\]

\[
\begin{array}{c}
L'W'I \xrightarrow{\text{in}} WLI \xrightarrow{\text{Win}} WI \\
\searrow \downarrow \downarrow \nearrow U'W'I \xrightarrow{\text{Win}} UI
\end{array}
\]
Main result

Theorem

There is a (liberal) morphism of institutions between:

- The institution of Set-functors which preserve weak pullbacks and their strongly finitary coalgebraic logic Ins_{wpb}
- The institution of Poset-functors which preserve exact squares and their strongly finitary coalgebraic logic $\text{Ins}'_{\text{ex-sq}}$

sending a signature to its posetification, and assigning to each logic its positive fragment.
Some references

B-Kurz11 *Finitary functors: from Set to Preord and Poset*, CALCO2011

Pattinson03 *Translating logics for coalgebras*, WADT2002
Thank you!
Thank you!
Thank you!
Examples

1. \(T = \mathcal{P} \) (finite) powerset functor

 Logic \(\mathcal{L}A \) is the BA generated by \(\Box a \), for \(a \in A \), \(\text{wrt} \ \Box \) preserving finite meets

 Semantics \(\delta_X : \mathcal{L}P \mathcal{X} \to \mathcal{P} \mathcal{P}^{\text{op}} \mathcal{X}, \ \Box a \mapsto \{ b \in \mathcal{P} \mathcal{X} \mid b \subseteq a \} \)

2. \(T = \mathcal{N} \) the neighbourhood functor.

 Logic \(\mathcal{L}A \) is the BA generated by \(\Box a \), for \(a \in A \), no equations

 Semantics \(\delta_X : \mathcal{L}P \mathcal{X} \to \mathcal{P} \mathcal{N}^{\text{op}} \mathcal{X}, \ \Box a \mapsto \{ s \in \mathcal{N} \mathcal{X} \mid a \in s \} \)
More examples...

1. \(T = \mathcal{M} \) the (finite) multisets functor

 Logic \(LA \) is the BA generated by \(\diamond_n a \), for \(a \in A \), wrt \(\diamond_n \) preserving finite joins

 Semantics \(\delta_X : LPX \to P\mathcal{M}^{\text{op}}X \),
 \[
 \diamond_n a \mapsto \{ \varphi \in \mathcal{M}X \mid \text{card } \varphi(x) \geq n \}, \text{ for } n \in \mathbb{N}
 \]

2. \(T = \mathcal{D} \) (finite) probability functor

 Logic \(LA \) is the BA generated by \(\diamond_q a \), for \(a \in A \), wrt \(\diamond_q \) preserving finite joins

 Semantics \(\delta_X : LPX \to P\mathcal{D}^{\text{op}}X \), \(\diamond_q a \mapsto \{ d \in \mathcal{D}X \mid \sum_{x \in a} d(x) \geq q \} \)
 for \(q \in \mathbb{Q} \cap [0, 1] \)
Posetifications - or how to extend functors from sets to posets

Functor \(T : \text{Set} \rightarrow \text{Set} \)

Extension Locally monotone functor

\(T' : \text{Poset} \rightarrow \text{Poset} \)

Posetification Extension with universal property \(T' = \text{Lan}_D(DT) \)

Poset-left Kan extension

\[
\begin{array}{ccc}
\text{Set} & \xrightarrow{D} & \text{Poset} \\
\downarrow T & & \downarrow T' \\
\text{Set} & \xrightarrow{D} & \text{Poset}
\end{array}
\]
Theorem (B-Kurz-Velebil13)

1. **Existence**

 Posetification exists for any functor $T : \text{Set} \rightarrow \text{Set}*

2. **A characterisation of left Kan extensions to posets**

 For locally monotone $T' : \text{Poset} \rightarrow \text{Poset}, \ TFAE*

 - T' is $\text{Lan}_D(DT)$ for some $T : \text{Set} \rightarrow \text{Set}$
 - T' preserves discrete posets and coinserters of simplicial resolutions

3. **Taking posetifications is functorial**

 $$[\text{Set, Set}] \longrightarrow [\text{Poset, Poset}], \ T \mapsto \text{Lan}_D(DT)$$

(proof technique: use a ”simplicial representation” of posets)

A. Balan, A. Kurz, J. Velebil

An institutional approach to positive coalgebraic logic
Examples

Kripke functors

\[T ::= \text{Id} \mid T_{X_0} \mid T_0 + T_1 \mid T_0 \times T_1 \mid T^A \]

Posetifications are as expected:

- Posetification of \(\text{Id}_{\text{Set}} \) is \(\text{Id}_{\text{Poset}} \)
- Posetification of the constant functor at set \(X_0 \) is the constant functor at discrete poset \((X_0, =)\)
- Posetification of (co)product functor is again the (co)product, this time in Poset
- Posetification of exponential functor \(TX = X^A \) is again exponential in Poset
Examples (continued)

Motivating example: \(T = \mathcal{P} \), the (finite) power-set functor

Posetification is the (finitely generated) convex power-set functor, with the Egli-Milner order.
Motivating example: $T = \mathcal{P}$, the (finite) power-set functor

Posetification is the (finitely generated) convex power-set functor, with the Egli-Milner order.

Distribution functor $\mathcal{D}X = \{ d : X \rightarrow [0, 1] \mid \sum_{x \in X} d(x) = 1 \}$

Coalgebras: Markov chains

Posetification: $\mathcal{D}'(X, \leq)$ is $\mathcal{D}X$, with order given by

$$d \leq d' \iff \exists \omega \in \mathcal{D}(X \times X) \cdot \begin{cases} \omega(x, y) > 0 \Rightarrow x \leq y \\ \sum_{y \in X} \omega(x, y) = d(x) \\ \sum_{x \in X} \omega(x, y) = d'(y) \end{cases}$$

Multiset functor $\mathcal{M}X = \{ \phi : X \rightarrow \mathbb{N} \mid \text{supp}(\phi) < \infty \}$

Coalgebras: multigraphs

Posetification: still to compute...
Simplicial representation of posets

\[X \text{ poset} \implies \text{diagram of (discrete po)sets:} \quad X_1 \xrightarrow{d_0} X_0 \xrightarrow{d_1} \]

- \(X_0 \) is the underlying set of \(X \)
- \(X_1 \) is the set of comparable pairs \(X_1 = \{(x, x') \in X \mid x \leq x'\} \)
- \(d_0, d_1 : X_1 \rightarrow X_0 \) the usual projections

The co inserter of the diagram is \(X \) (coinserter = ordered analogue of a coequalizer)

The left Kan extension (posetification) of any \(T : \text{Set} \rightarrow \text{Set} \)

Put \(T'X := \text{coins}(Td_0, Td_1) \), for a poset \(X \)

The assignment \(X \mapsto T'X \) is locally monotone, coincides with \(T \) on discrete posets and can be exhibited as left Kan extension of \(DT \) along \(D \)
Example

- $\hat{T} : \text{Set} \rightarrow \text{Set}, \quad \hat{T}X = 2 \times X^A$
 \hat{T}-coalgebras are deterministic automata with alphabet A and binary outputs, deciding if a state is accepting or not.

- $T : \text{Set} \rightarrow \text{Set}, \quad TX = (\mathcal{P}X)^A$
 T-coalgebras are LTS, with label set A.

- Natural transformation $\sigma : \hat{T} \rightarrow T$, $\sigma_X : 2 \times X^A \rightarrow (\mathcal{P}X)^A$,
 $\sigma_X(i, f)(a) = \{f(a)\}$

 Then $\text{Mod}(\sigma) : \text{Coalg}(\hat{T}) \rightarrow \text{Coalg}(T)$ transforms a deterministic automata into a LTS forgetting whether the resulting state is accepting outputs.
Poset-functors and their coalgebras

\(T : \text{Poset} \rightarrow \text{Poset} \) **locally monotone functor**

\(T \)-coalgebras

- Partially ordered set of states \(X = (X, \leq) \)
- Monotone transition map \(X \xrightarrow{c} TX \)
- Monotone translation map \(X \xrightarrow{f} Y \)

Poset-category \(\text{Coalg}(T) \)
Poset-functors and their coalgebras

$T : \text{Poset} \to \text{Poset}$ locally monotone functor

T-coalgebras

- Partially ordered set of states $X = (X, \leq)$
- Monotone transition map $X \overset{c}{\to} TX$
- Monotone translation map $X \overset{f}{\to} Y$

Poset-category $\text{Coalg}(T)$

Examples

- ordered automata: $X \to X^A \times \{0, 1\}$, with A the (discrete) input set
Poset-functors and their coalgebras

\(T : \text{Poset} \to \text{Poset} \) \textbf{locally monotone functor}

\(T \)-coalgebras

- Partially ordered set of states \(X = (X, \leq) \)
- Monotone transition map \(X \xrightarrow{c} TX \)
- Monotone translation map \(X \xrightarrow{f} Y \)

Poset-category \(\text{Coalg}(T) \)

Examples

- ordered automata: \(X \to X^A \times \mathbb{2} \), with \(A \) the (discrete) input set

\(X \xrightarrow{f} Y \)
\(c \downarrow \quad \downarrow \quad d \)
\(TX \xrightarrow{Tf} TY \)

\(x \leq x' \)
Poset-functors and their coalgebras

\[T : \text{Poset} \rightarrow \text{Poset} \text{ locally monotone functor} \]

\(T \)-coalgebras

- Partially ordered set of states \(X = (X, \leq) \)
- Monotone transition map \(X \xrightarrow{c} T X \)
- Monotone translation map \(X \xrightarrow{f} Y \)

Poset-category \(\text{Coalg}(T) \)

Examples

- ordered automata: \(X \rightarrow X^A \times 2 \), with \(A \) the (discrete) input set
Poset-functors and their coalgebras

\(T : \text{Poset} \to \text{Poset} \) \textbf{locally monotone functor}

\(T \)-coalgebras

- Partially ordered set of states \(X = (X, \leq) \)
- Monotone transition map \(X \xrightarrow{c} TX \)
- Monotone translation map \(X \xrightarrow{f} Y \)

Poset-category \(\text{Coalg}(T) \)

Examples

- ordered automata: \(X \to X^A \times 2 \), with \(A \) the (discrete) input set
Poset-functors and their coalgebras

$T : \text{Poset} \to \text{Poset}$ \textit{locally monotone functor}

T-coalgebras

- Partially ordered set of states $X = (X, \leq)$
- Monotone transition map $X \xrightarrow{c} TX$
- Monotone translation map $X \xrightarrow{f} Y$

Poset-category $\text{Coalg}(T)$

Examples

- ordered automata: $X \to X^A \times \mathbb{2}$, with A the (discrete) input set

\[
x \leq x' \quad \Downarrow \quad a \Downarrow \quad a \Downarrow \quad y \leq y'
\]
Poset-functors and their coalgebras

\(T : \text{Poset} \to \text{Poset} \) \textit{locally monotone functor}

\(T \)-coalgebras

- Partially ordered set of states \(X = (X, \leq) \)
- Monotone transition map \(X \xrightarrow{c} TX \)
- Monotone translation map \(X \xrightarrow{f} Y \)

Poset-category \(\text{Coalg}(T) \)

Examples

- ordered automata: \(X \to X^A \times \mathbb{2} \), with \(A \) the (discrete) input set

\[x \leq x' \]
\[a \]
\[y \leq y' \]

- ordered Kripke frames: \(X \to \mathcal{P}_cX \), with \(\mathcal{P}_c \) the convex powerset functor ordered by

\[U, V \in \mathcal{P}_cX, \ U \subseteq V \iff (\forall x \in U \ \exists y \in V. \ x \leq y) \land (\forall y \in V \ \exists x \in U. \ x \leq y) \]
Monotone relations

A monotone relation $X \rightharpoonup Y$ is a monotone map $r : Y^{\text{op}} \times X \to \mathcal{P}$

$$y' \leq y \land r(y, x) \land x \leq x' \implies r(y', x')$$

Each monotone map $f : X \to Y$ produce two (adjoint) monotone relations:

$$X \xrightarrow{f^\Diamond} Y \quad f^\Diamond(y, x) \iff y \leq f(x)$$

$$Y \xrightarrow{f^\Diamond} X \quad f^\Diamond(x, y) \iff f(x) \leq y$$

Each monotone relation $X \rightharpoonup Y$ can be represented as a cospan

$$Y \xrightarrow{r_0} \text{Coll}(r) \xleftarrow{r_1} X, \quad r = r_0^\Diamond \circ r_1^\Diamond$$

where the collage $\text{Coll}(r)$ is $Y + X$, with order

$$y \leq y' \quad x \leq x' \quad r(y, x)$$

A. Balan, A. Kurz, J. Velebil

An institutional approach to positive coalgebraic logic

WADT2014
Relation lifting

$T : \text{Poset} \to \text{Poset}$ locally monotone functor, $Y \overset{r}{\rightarrow} X$ monotone relation

$$\forall Y \overset{r_0}{\rightarrow} \text{Coll}(r) \; \overset{r_1}{\rightarrow} X$$

$$\forall TY \overset{Tr_0}{\rightarrow} T\text{Coll}(r) \; \overset{Tr_1}{\rightarrow} TX$$
Relation lifting

$T : \text{Poset} \rightarrow \text{Poset}$ locally monotone functor, $Y \xrightarrow{r} X$ monotone relation

$$
\begin{array}{ccc}
Y & \xleftarrow{r} & X \\
\downarrow{r_0} & & \downarrow{r_1} \\
\text{Coll}(r) & & \text{Coll}(r) \\
\end{array}
$$

$$
\begin{array}{ccc}
TY & \xleftarrow{(Tr_0)} & TX \\
\downarrow{(Tr_1)} & & \\
T\text{Coll}(r) & & T\text{Coll}(r) \\
\end{array}
$$

$r = r_0 \circ r_1$
Relation lifting

$T : \text{Poset} \to \text{Poset}$ locally monotone functor, $Y \xrightarrow{r} X$ monotone relation

\[
\begin{array}{ccc}
Y & \xrightarrow{r} & X \\
\downarrow{r_0} & & \downarrow{r_1} \\
\text{Coll}(r) & & \\
\end{array} \quad \begin{array}{ccc}
TY & \xleftarrow{\text{Rel}_T(r)} & TX \\
\downarrow{(Tr_0)} & & \downarrow{(Tr_1)} \\
T\text{Coll}(r) & & \\
\end{array}
\]

$r = r_0 \circ r_1$

Relation lifting $\text{Rel}_T(r) = (Tr_0) \circ (Tr_1)$
Relation lifting

\(T : \text{Poset} \rightarrow \text{Poset} \) locally monotone functor, \(Y \xrightarrow{r} X \) monotone relation

\[
\begin{aligned}
\text{Coll}(r) & \xleftarrow{\cdot} \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \\
& \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
& \text{Coll}(r) & \text{Coll}(r) & \text{Coll}(r) & \text{Coll}(r) & \text{Coll}(r)
\end{aligned}
\]

\(r = r_0 \diamond \circ r_1 \diamond \)

Relation lifting \(\text{Rel}_T(r) = (Tr_0) \diamond \circ (Tr_1) \diamond \)

\(\text{Rel}_T(r)(v, u) \iff Tr_0(v) \leq Tr_1(u) \text{ in } T\text{Coll}(r) \)
Relation lifting

\(T : \text{Poset} \rightarrow \text{Poset} \) locally monotone functor, \(Y \xrightarrow{r} X \) monotone relation

\[
\begin{array}{ccc}
Y & \xleftarrow{r} & X \\
\downarrow{r_0} & & \downarrow{r_1} \\
\text{Coll}(r) & \xleftarrow{r} & \text{Coll}(r)
\end{array}
\quad
\begin{array}{ccc}
TY & \xleftarrow{\text{Rel}_T(r)} & TX \\
\downarrow{(Tr_0)} & & \downarrow{(Tr_1)} \\
T\text{Coll}(r) & \xleftarrow{(Tr_0)} & T\text{Coll}(r)
\end{array}
\]

\(r = r_0 \circ r_1 \)

Relation lifting \(\text{Rel}_T(r) = (Tr_0) \circ (Tr_1) \)

\(\text{Rel}_T(r)(v, u) \iff Tr_0(v) \leq Tr_1(u) \) in \(T\text{Coll}(r) \)

\(T \) preserves \text{exact squares} \implies \text{well-behaved relation lifting}
Exact squares

\[
\begin{array}{c}
E \xrightarrow{p_1} Y \\
\downarrow \downarrow \downarrow \downarrow \\
X \xrightarrow{f} Z
\end{array}
\quad \quad \quad
\begin{array}{c}
E \xrightarrow{p_0} Y \\
\downarrow \downarrow \downarrow \downarrow \\
X \xrightarrow{f} Z
\end{array}
\]

Exact square: \(p_0 \leq g \) and \(p_1 = g \)

(exact square = the ordered analogue of weak pullback)
Exact squares

Exact square: $E \xrightarrow{p_1} Y$ \quad and \quad $f(x) \leq g(y)$ \quad \exists w \in E. \ (x \leq \alpha(w) \land \beta(w) \leq y)$

(exact square = the ordered analogue of weak pullback)
Relation lifting - examples

1. \(T = \mathcal{P}_c \) the convex powerset \(X \rightarrow Y \)

\[
\text{Rel}_{\mathcal{P}_c}(r)(v, u) \iff (\forall y \in v \exists x \in u. r(y, x)) \land (\forall x \in u \exists y \in v. r(y, x))
\]

(here \(u \in \mathcal{P}_c(X), v \in \mathcal{P}_c(Y) \) are convex subsets)

2. \(T = (-)^A \times \mathcal{P} \)

\[
\text{Rel}_T(r)(v, u) \iff (\forall a \in A, r(x_a, y_a)) \land (i \leq j)
\]

where \(u = ((x_a)_{a \in A}, i) \in TX, v = ((y_a)_{a \in A}, j) \in TY \)
Simulations

Locally monotone functor $T' : \text{Poset} \to \text{Poset}$

Coalgebras $X \overset{c}{\rightarrow} T' X$, $Y \overset{d}{\rightarrow} T' Y$
Simulations

Locally monotone functor $T' : \text{Poset} \to \text{Poset}$

Coalgebras $X \xrightarrow{c} T'X$, $Y \xrightarrow{d} T'Y$

A monotone relation $X \xrightarrow{r} Y$ is called a simulation if

\[
\begin{array}{c}
x \rightsquigarrow c(x) \\
\downarrow r \\
y \rightsquigarrow d(y)
\end{array}
\]
Simulations

Locally monotone functor $T' : \text{Poset} \to \text{Poset}$

Coalgebras $X \xrightarrow{c} T'X$, $Y \xrightarrow{d} T'Y$

A monotone relation $X \xrightarrow{r} Y$ is called a simulation if

$$\xymatrix{ x \ar@{~>}[r] \ar[d]_r & c(x) \ar[d]_{\text{Rel}_T(r)} \\
 y \ar@{~>}[r] & d(y) }$$
Simulations

Locally monotone functor $T' : \text{Poset} \to \text{Poset}$

Coalgebras $X \xrightarrow{c} T'X$, $Y \xrightarrow{d} T'Y$

A monotone relation $X \xrightarrow{r} Y$ is called a simulation if

$$
\begin{align*}
x & \xrightarrow{\sim} c(x) \\
r & \mid \quad \text{Rel}_T(r) \\
y & \xrightarrow{\sim} d(y)
\end{align*}
$$

$$
\begin{align*}
X & \xrightarrow{c^\Diamond} TX \\
r & \mid \quad \leq \quad \text{Rel}_T(r) \\
Y & \xrightarrow{d^\Diamond} TY
\end{align*}
$$
Simulations

Locally monotone functor $T' : \text{Poset} \to \text{Poset}$

Coalgebras $X \xrightarrow{c} T'X$, $Y \xrightarrow{d} T'Y$

A monotone relation $X \xrightarrow{r} Y$ is called a simulation if

$$
\begin{align*}
 x & \sim c(x) \\
 y & \sim d(y)
\end{align*}
$$

A coalgebra morphism $X \xrightarrow{f} Y$ induces simulations $X \xrightarrow{f\Diamond} Y$ and $Y \xrightarrow{f\Diamond} X$

Simulations are closed under composition if T' preserves exact squares

Satisfaction relation is monotone wrt simulation order on states:

$$
\begin{align*}
 r(y, x) \land (x \Vdash \varphi) \land \varphi \leq \psi \Longrightarrow (y \Vdash \psi)
\end{align*}
$$

for all simulations $X \xrightarrow{r} Y$, states $x \in X, y \in Y$ and formulae $\varphi, \psi \in I'$
Motivating example

Signature $T = P$ (finite) powerset functor

Logic LA is the BA generated by $(\Box a)_{a \in A}$ such that

$\Box(a \land b) = \Box a \land \Box b$

Semantics $\delta_X : LPX \to PP^{op}X$, $\Box a \mapsto \{ b \in PX \mid b \subseteq a \}$

Posetification $T' = P_c$ (finitely generated) convex powerset functor

Logic $L'A$ is the DLat generated by $(\Box a, \Diamond a)_{a \in A}$b such that

$\Box(a \land b) = \Box a \land \Box b$, $\Diamond(a \lor b) = \Diamond a \lor \Diamond b$

$\Box a \land \Diamond b \leq \Diamond(a \land b), \quad \Box(a \lor b) \leq \Diamond a \lor \Box b$

Semantics

$\delta'_X : LP'X \to PP'^{op}X$, $\frac{}{\Box a \mapsto \{ b \in PX \mid b \subseteq a \}}$

$\Diamond a \mapsto \{ b \in PX \mid b \cap a \neq \emptyset \}$

Translation $L'W \cong WL$ induce the DL morphism α_P

$\alpha_P(\Diamond \varphi) = \neg \Box \neg \alpha_P(\varphi)$, $\alpha_P(\Box \varphi) = \Box \alpha_P(\varphi)$
Motivating example

Signature \(T = \mathcal{P} \) (finite) powerset functor

Logic \(\mathcal{L}A \) is the BA generated by \((\Box a)_{a \in A} \) such that
\[
\Box (a \land b) = \Box a \land \Box b
\]

Semantics \(\delta_X : \mathcal{L}P X \rightarrow \mathcal{P}X^{\text{op}} \), \(\Box a \mapsto \{ b \in \mathcal{P}X \mid b \subseteq a \} \)

Posetification \(T' = \mathcal{P}_c \) (finitely generated) convex powerset functor

Logic \(\mathcal{L}'A \) is the DLat generated by \((\Box a, \Diamond a)_{a \in A} \) such that
\[
\Box (a \land b) = \Box a \land \Box b, \quad \Diamond (a \lor b) = \Diamond a \lor \Diamond b
\]
\[
\Box a \land \Diamond b \leq \Diamond (a \land b), \quad \Box (a \lor b) \leq \Diamond a \lor \Box b
\]

Semantics
\[
\delta'_X : \mathcal{L}'P' X \rightarrow \mathcal{P}'X^{\text{op}} \times \left\{ \begin{array}{l}
\Box a \mapsto \{ b \in \mathcal{P}X \mid b \subseteq a \}
\Diamond a \mapsto \{ b \in \mathcal{P}X \mid b \cap a \neq \emptyset \}
\end{array} \right.
\]

Translation \(\mathcal{L}'W \cong \mathcal{W}L \) induce the DL morphism \(\alpha_P \)
\[
\alpha_P(\Diamond \varphi) = \neg \Box \neg \alpha_P(\varphi) \quad \alpha_P(\Box \varphi) = \Box \alpha_P(\varphi)
\]
Motivating example

Signature $T = \mathcal{P}$ (finite) powerset functor

Logic LA is the BA generated by $(\square a)_{a \in A}$ such that

$\square(a \land b) = \square a \land \square b$

Semantics $\delta_X : LPX \to PP^{op}X$, $\square a \mapsto \{ b \in PX \mid b \subseteq a \}$

Posetification $T' = \mathcal{P}_c$ (finitely generated) convex powerset functor

Logic $L'A$ is the DLat generated by $(\square a, \Diamond a)_{a \in A}$ such that

$\square(a \land b) = \square a \land \square b$, $\Diamond(a \lor b) = \Diamond a \lor \Diamond b$

$\square a \land \Diamond b \leq \Diamond(a \land b)$, $\square(a \lor b) \leq \Diamond a \lor \square b$

Semantics

$\delta'_X : L'P'X \to P'P'^{op}X$, $\left\{\begin{array}{l}
\square a \mapsto \{ b \in PX \mid b \subseteq a \} \\
\Diamond a \mapsto \{ b \in PX \mid b \cap a \neq \emptyset \}
\end{array}\right.$

Translation $L'W \cong WL$ induce the DL morphism α_P

$\alpha_P(\Diamond \varphi) = \lnot \square \lnot \alpha_P(\varphi)$ $\alpha_P(\square \varphi) = \square \alpha_P(\varphi)$